Université de Lorraine

(Postdoc offer) Statistical and Tensor Methods for Spatiotemporal Heterogeneous Data Analysis

2024-12-31 (Europe/Paris)
Enregistrer le travail

Offer Description

We are offering a postdoc position on the development of statistical and tensor decomposition methods for representation learning of heterogeneous data with application to the analysis neuroimaging data.

Location: The CRAN laboratory (University of Lorraine) at Nancy, France, with visits to the MLSP laboratory (UMBC) in Maryland, USA. The candidate will work with Prof. Sebastian Miron, Dr. Ricardo Borsoi and Prof. David Brie in the CRAN laboratory, Nancy, and with Prof. Tülay Adali at the MLSP laboratory, UMBC, USA.

The starting date is flexible (the position is open until filled).

Description: The analysis of spatiotemporal data is a fundamental problem in multiple domains such as neuroscience, epidemiology, climate science and pollution monitoring. Developing representation learning methods for spatiotemporal data that can effectively and jointly handle data from diverse modalities poses a significant challenge. A particular difficulty is to devise flexible models which are directly interpretable, readily providing insight into the relationships that are learned from the data. The candidate will develop flexible representations learning and data analysis methods specifically designed to handle heterogeneous spatiotemporal data, effectively utilizing both algebraic (matrix and tensor decompositions) and statistical frameworks to generate results that are interpretable and backed by statistical guarantees. The developed methods will be applied to personalized medicine, with the aim to elucidate the interplay between neuroimaging data (e.g., fMRI) and cognitive/socioeconomic factors as well as their temporal evolution.

Candidate profile: Ph.D. degree in signal processing, machine learning or applied mathematics or related fields.

To apply: If interested, please send your application including an academic CV and a motivation letter to sebastian.miron@univ-lorraine.fr, ricardo.borsoi@univ-lorraine.fr, david.brie@univ-lorraine.fr, and adali@umbc.edu.

For further information, please see: https://cran-simul.github.io/assets/jobs/P_postdoc_these_NSF_2024.pdf

Requirements

Research Field

Engineering » Electrical engineering

Education Level

PhD or equivalent

Languages

ENGLISH

Level

Good

Internal Application form(s) needed

Candidatez ici

Remplissez le formulaire ci-dessous pour postuler à ce poste.
Allowed file types: PDF, DOC, DOCX, TXT, RTF
Allowed file types: PDF, DOC, DOCX, TXT, RTF

*En postulant à un emploi répertorié sur Academic Positions, vous acceptez nos conditions générales et notre politique de confidentialité.

En soumettant cette candidature, vous consentez à ce que nous conservions vos données personnelles à des fins liées au service. Nous attachons de l'importance à votre vie privée et traiterons vos informations de manière sécurisée. Si vous souhaitez que vos données soient supprimées, veuillez nous contacter directement.

Détails de l'offre

Titre
(Postdoc offer) Statistical and Tensor Methods for Spatiotemporal Heterogeneous Data Analysis
Localisation
34 Cours Léopold Nancy, France
Publié
2024-05-06
Date limite d'inscription
2024-12-31 23:59 (Europe/Paris)
2024-12-31 23:59 (CET)
Type de poste
Enregistrer le travail

A propos de l'employeur

Université de Lorraine promotes innovation through the dialogue of knowledge, taking advantage of the variety and strength of its scientific fields...

Visitez la page de l'employeur

Cela pourrait vous intéresser

...
Speeding Up DNA Analysis With String Algorithms Centrum Wiskunde & Informatica (CWI) 4 min de lecture
...
Deciphering the Gut’s Clues to Our Health University of Turku 5 min de lecture
...
Understanding Users to Optimise 3D Experiences Centrum Wiskunde & Informatica (CWI) 5 min de lecture
...
Control Systems: The Key to Our Automated Future? Max Planck Institute for Software Systems (MPI-SWS) 5 min de lecture
Plus de stories